

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 31 (2011) 1293-1303

www.elsevier.com/locate/jeurceramsoc

Phase diagrams of the systems Al₂O₃–ZrO₂–Ln(Y)₂O₃ as a source of multiphase eutectics for creating composite structural and functional materials

S. Lakiza*, L. Lopato

Frantsevich Institute for Problems of Materials Science, Krzizanovsky 3, 03142 Kyiv, Ukraine

Available online 15 January 2011

Abstract

Phase equilibria in the ternary systems Al_2O_3 – ZrO_2 – Ln_2O_3 (Ln = La, Nd, Sm, Gd, Er, Yb and Y) were investigated by identical methods in all range of concentrations and 1250–2700 °C temperature range using differential and derivative in solar furnace thermal analysis in controlled medias, X-ray diffraction phase analysis, local X-ray spectral analysis, chemical analysis, electron and optical microscopy, petrography. The phase diagrams of the systems studied are presented as isothermal at 1650 °C sections and melting diagrams. The interaction in the systems is characterized by the absence of ternary compounds and regions of appreciable solid solutions based on the binary compounds and components. Only narrow regions of ternary solid solutions were discovered at high temperatures by CALPHAD method and because of existing small solubility on the base of ZrO₂ in the binary bounding system Al_2O_3 –ZrO₂. The phase equilibria in the systems are determined by zirconia as the most stable compound. Solidification in the systems is completed in eutectic reactions. The established interaction regularities allowed to forecast interaction and phase diagrams construction in systems with other lanthanides (Ce, Pr, Pm, Eu, Tb, Dy, Ho, Tm, Lu). New 13 quasibinary and 26 ternary eutectics were found for the first time. Their temperatures rise from 1660 °C for the La₂O₃ system to 1840 °C for the Lu₂O₃ system. Fluorite-type phases equilibrate with garnet-type phases for the systems from Tb₂O₃ to Lu₂O₃. In the systems from Pr₂O₃ to Gd₂O₃ they equilibrate with perovskite-type phases and β -Al₂O₃. On the base of microstructure investigations it was established that three-phase alumina-rich eutectics crystallizes according to the mechanism of cooperative growth. It opens up possibilities to obtain composite materials using directional solidification method. © 2010 Elsevier Ltd. All rights reserved.

Keywords: Alumina; Zirconia; Lanthanides oxides; Yttria; Phase diagrams

1. Introduction

The systems Al₂O₃–ZrO₂–Ln(Y)₂O₃ plays a vital part in material science of modern ceramics. Wide scale of materials for solid oxide fuel cells (SOFC), thermal barrier coatings (TBC), high-temperature structural and functional materials can be constructed in these systems. Special attention during last decade has been paid to the development of heat-resistant materials with high strength and phase stability at temperatures above 1600 °C. Up to this time there are no structural materials except direction-ally solidified oxide eutectics (DSE), which could be used in oxidizing environment and retain enough strength at such high temperatures.

Development of new multiphase materials, especially composites, as the first step needs constructing phase diagrams of

* Corresponding author.

0955-2219/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2010.12.004 the systems in which desired materials are planned to obtain. This is why phase diagrams of the Al_2O_3 – ZrO_2 – $Ln(Y)_2O_3$ (Ln = lanthanides) are of a great significance.

Phase diagrams construction of the systems Al_2O_3 – ZrO_2 – $Ln(Y)_2O_3$ was based on the basis of much efforts on constructing binary phase diagrams, performed in the previous decades by a number of scientists. Among them it is necessary to refer to the works of Rouanet,¹ Bondar,² Mizuno,³ Wu,⁴ and many others.^{5–16}

Information on Al₂O₃–ZrO₂–Ln(Y)₂O₃ phase diagrams was very poor. Only isothermal sections at undersolidus temperatures were known for the system Al₂O₃–ZrO₂–Y₂O₃.^{17,18}

2. Experimental details

Specimens were obtained by both chemical method and by melting the component oxides. Powders of $Al(NO_3)_3 \cdot 9H_2O$, $ZrO(NO_3)_2 \cdot 2H_2O$ with purity 99.9% (Donetskij zavod khimreaktiviv, Donetsk) and Ln_2O_3/Y_2O_3 (99.99%) were used for

E-mail address: sergij_lakiza@ukr.net (S. Lakiza).

Fig. 1. The upper temperature stability limits for superstructures $Ln_2Zr_2O_7$ and $Ln_4Zr_3O_{12}$ vs lanthanides atomic number.²¹

chemical route preparations. Both salts and Ln_2O_3/Y_2O_3 were dissolved in water with some droplets of concentrated nitric acid added, dried, calcined at 900 °C in air and pressed into pellets 5 mm in diameter and 5 mm in height. Powders of alumina (99.9%), zirconia (99.95%), Ln_2O_3/Y_2O_3 (99.99%) from Donetskij zavod khimreaktiviv, Donetsk, were used as raw materials. The appropriate quantities of oxides were blended in an agate mortar with ethanol, dried and pressed into pellets of the same dimensions.

For the constructing of isothermal sections chemically derived samples were annealed at 1250 and 1650 °C for the time necessary to attain equilibrium, established by unchanging XRD patterns. Other samples were fired at 1250 °C in air for 6 h, then melted in molybdenum pots in a DTA device¹⁹ at total pressure of H₂ about 1.2 atm and annealed below the solidus temperature for 1 h. The specimens were investigated by DTA in H₂ at temperatures up to 2300 °C,¹⁹ derivative thermal analysis in solar furnace up to 2800 °C,²⁰ X-ray (DRON-1.5, Burevestnik, St.-Petersburg), petrographic (MIN-8 optical microscope,

Fig. 2. Isothermal sections at $1650^{\circ}C$ of some Al_2O_3 - ZrO_2 - $Ln(Y)_2O_3$ phase diagrams: (A) a - La_2O_3 ; b - Nd_2O_3 ; c - Sm_2O_3 ; d - Gd_2O_3 ; (B) a - Y_2O_3 ; b - Er_2O_3 ; c - Yb_2O_3 .

Fig. 2. (Continued).

LOMO, St.-Petersburg) and microstructure phase (JEOL JSM-6490LV) analysis. The accuracy for XRD measurement came to ± 0.0003 nm, for refractive indexes measured with immerse liquids ± 0.003 , with alloys – ± 0.02 .

3. Results and discussion

After analysis of interaction in the binary bounding systems Al_2O_3 -ZrO₂, Al_2O_3 -Ln(Y)₂O₃ and ZrO₂-Ln(Y)₂O₃ it became clear that the construction of the Al_2O_3 -ZrO₂-Ln(Y)₂O₃ phase diagrams depends on interaction in the systems Al_2O_3 -Ln(Y)₂O₃. The number of binary aluminates in these systems determines the construction of the ternary phase diagrams. So seven systems with La, Nd, Sm, Gd, Er and Yb oxides as well as Y₂O₃ were selected for complete phase diagrams construction in the temperature range 1250–2700 °C.

Such investigation is very important as far as it was performed under the same methods of sample preparation and analysis.

Temperatures for isothermal sections of phase diagrams at 1250 and 1650 °C were taken after analyzing the temperature stability limits of superstructure compounds in the systems ZrO_2 -Ln₂O₃.²¹ These limits versus Ln(Y) atomic numbers are presented in Fig. 1.

In this article we accepted the following shorthand notations of phases presented in the phase diagrams: T, F – ZrO₂-based solid solutions with tetragonal (space group $P4_2/nmc$) and cubic fluorite (*Fm3m*) structures, accordingly; A, B, C, H, X – Ln₂O₃-based solid solutions with low-temperature hexagonal ($P\bar{3}m1$), monoclinic (C2/m), low-temperature cubic (Ia3), high-temperature hexagonal ($P6_3/mmc$) and high-temperature cubic (Im3m) structures, accordingly; AL – Al₂O₃ ($Fd\bar{3}ma$), β – Ln₂O₃·11Al₂O₃ with hexagonal ($P6_3/mcm$) structure, LnA

– LnAlO₃ with perovskite-like (*Pbnm*) structure, $Ln_3A_5 - Ln_3Al_5O_{12}$ with garnet-like (*Ia3d*) structure, $Ln_2A - Ln_4Al_2O_9$ with monoclinic (*P*2₁/*c*) structure, $LnZ_2 - Ln_2Zr_2O_7$ with pyrochlore-like (*Fd3m*) structure.

In Fig. 2 isothermal sections at 1650 °C and in Fig. 3 – melting diagrams of the systems studied are presented.^{5,22–29} The main features of interaction in these systems are the lack of quasiternary compounds and appreciable regions of solid solutions based on quasibinary compounds and components. The most thermodynamically stable phases are oxides-components. Zirconia, as the most refractory phase, determines interaction in the systems. This phase equilibrates with the majority of other phases of the systems. Its primary crystallization fields gradually increases from La to Yb. Phase transformations of $F \leftrightarrows T$ ZrO₂-based solid solutions and $X \boxdot H \leftrightarrows A \leftrightarrows B \sqsupset C$ of Ln₂O₃-based solid solutions realize as liquid involving transformation processes. Thermal stability of compoundssuperstructures with the pyrochlore-type structure $Ln_2Zr_2O_7$ and with rhombohedral structure $Zr_3Ln_4O_{12}$ formed in the binaries $ZrO_2-Ln_2O_3$ does not change with adding third component (Al₂O₃) that is represented in the isothermal sections of the phase diagram. Solidification in the systems finishes in eutectic equilibria in the areas close to the binary bounding systems Al₂O₃-Ln(Y)₂O₃. The coordinates of firstly found three-phase eutectics from the systems Al₂O₃-ZrO₂-Ln(Y)₂O₃ are shown in Table 1.

In Fig. 4 some microstructures of alumina-rich three-phase eutectics in the systems Al₂O₃–ZrO₂–Ln(Y)₂O₃ are presented. Microstructure analysis revealed that alumina-rich three-phase eutectics demonstrate cooperative eutectic growth, so they can be obtained as three-phase "in situ" composite by directional solidification. The obtained results revealed that alumina-rich

Fig. 3. Melting diagrams of the systems Al_2O_3 - ZrO_2 - $Ln(Y)_2O_3$: (A) a - La_2O_3 ; b - Nd_2O_3 ; c - Sm_2O_3 ; d - Gd_2O_3 ; (B) a - Y_2O_3 ; b - Y_2O_3 (metastable); c - Er_2O_3 ; d - Yb_2O_3 .

Fig. 3. (Continued).

Al₂O₃

2039

(AL)

Yb A15012

(Y3A5)

1875

1925, p2 (Yb2A)

Yb_AI_O

ternary eutectics have similar gross composition, but consist of different set of phases. In these systems according to the lanthanide involved one can get three sets of three-phase eutectics: Al₂O₃/Ln₃Al₅O₁₂/ZrO₂, Al₂O₃/LnAlO₃/ZrO₂ and β -Al₂O₃/LnAlO₃/ZrO₂. This fact increases number of objects for directional solidification and allows choosing material with desirable set of properties for every specific utilization. As it was shown,^{30–32} such monocolony eutectic structures are the best high-temperature structural materials and can be used at temperatures up to 1650 °C. They are also proposed as good thermoemitters to convert heat energy into electric power.³³

The established interaction regularities in the systems Al_2O_3 - ZrO_2 - $Ln(Y)_2O_3$ (Ln = La, Nd, Sm, Gd, Er, Yb) allowed to forecast interaction and phase diagrams construction in systems with other lanthanides (Ce, Pr, Pm, Eu, Tb, Dy, Ho, Tm, Lu)

that were not studied. In Fig. 5 experimental and predicted results on liquidus projections for the systems Al_2O_3 – ZrO_2 – $Ln(Y)_2O_3$ are presented. The obtained results can be used as a guide for investigating the rest of the Al_2O_3 – ZrO_2 – $Ln(Y)_2O_3$ phase diagrams. According to this the limited experiments were conducted to verify the coordinates of alumina-rich ternary eutectics predicted. In Table 2 one can find the experimental and predicted coordinates of these ternary eutectics. In Fig. 6 microstructures of some alumina-rich eutectics from unstudied systems Al_2O_3 – ZrO_2 – $Ln(Y)_2O_3$ are given.

Yb_O.

2403

2380

mol.%

It is interesting to analyze the influence of lanthanide atomic number on interaction in the Al_2O_3 – ZrO_2 – $Ln(Y)_2O_3$ systems. To answer this question the dependence of alumina-rich eutectics melting temperatures *vs* lanthanide atomic number was compared to the melting temperatures of lanthanide ele-

Fig. 4. Microstructures of some alumina-rich three-phase eutectics in the systems $Al_2O_3-ZrO_2-Ln(Y)_2O_3$: $a - \beta-Al_2O_3 + T + LaAlO_3$, $2000\times$; $b - \beta-Al_2O_3 + F + NdAlO_3$, $8000\times$; $c - Al_2O_3 + F + SmAlO_3$, $3000\times$; $d - Al_2O_3 + F + GdAlO_3$, $3000\times$; $e - Al_2O_3 + F + Y_3Al_5O_{12}$, $3000\times$; $f - Al_2O_3 + F + Er_3Al_5O_{12}$, $1000\times$; $g - Al_2O_3 + F + Y_3Al_5O_{12}$, $5000\times$:

ments, their oxides and lanthanide aluminates (Fig. 7). When comparing these dependences one can make the following conclusions.

Metal lanthanides, their oxides, aluminates as well as threephase eutectics demonstrate melting temperatures monotony leaps for Ce, Eu, Tm–Yb, that correspond to the free, semioccupied and completely occupied electron configurations of f lanthanides shells.³⁵ Because for lack of quasiternary compounds and wide areas of ternary solid solutions in the systems studied the influence of electron configurations on interaction in the systems remains when their componency increases, but diminishes.

 $\begin{array}{l} Fig. 5. \ Experimental and predicted liquidus surface projections of the \\ Al_2O_3-ZrO_2-Ln(Y)_2O_3 \\ phase diagrams: systems with: a - \\ La_2O_3; b - \\ Ce_2O_3; c - \\ Pr_2O_3; d - \\ Nd_2O_3; e - \\ Sm_2O_3; f - \\ Eu_2O_3; f - \\ Eu_2O_3; g - \\ Gd_2O_3; h - \\ Tb_2O_3; i - \\ Dy_2O_3; j - \\ Ho_2O_3; k - \\ Y_2O_3; l - \\ Er_2O_3; m - \\ Tm_2O_3; n - \\ Yb_2O_3; o - \\ Lu_2O_3. \end{array}$

In Fig. 8 the dependences of $ZrO_2-Ln_2O_3^{1,36}$ and $HfO_2-Ln_2O_3^{37-40}$ binary eutectics melting temperatures *vs* lanthanides atomic number are shown. When comparing them with the same dependences for lanthanides aluminates (Fig. 7) one can conclude that the influence of f lanthanides shell electron configuration is pronounced in the systems Al₂O₃-Ln₂O₃, ZrO₂-Ln₂O₃ and HfO₂-Ln₂O₃. In other words, influence of f lanthanides shell electron config-

uration on the interaction is restricted on the level of binary systems.

Taking into consideration the literature and experimental data on applications of materials, constructed in binary bounding and ternary Al_2O_3 – ZrO_2 – $Ln(Y)_2O_3$ systems, in Fig. 9 areas of perspective single phase, two- and three-phase composite, two- and three-phase eutectic materials for application as TBC, SOFC, high-temperature structural materials

 $\begin{array}{l} Fig. 6. \ Microstructures of some Al_2O_3-rich three-phase eutectics in the Al_2O_3-ZrO_2-Ln_2O_3 \ systems: a-\beta-Al_2O_3+T-ZrO_2+PrAlO_3; b-Al_2O_3+F-ZrO_2+EuAlO_3; c-Al_2O_3+F-ZrO_2+Dy_3Al_5O_{12}; d-Al_2O_3+F-ZrO_2+Ho_3Al_5O_{12}; e-Al_2O_3+F-ZrO_2+Tm_3Al_5O_{12}; f-Al_2O_3+F-ZrO_2+Lu_3Al_5O_{12}; d-Al_2O_3+F-ZrO_2+Lu_3Al_5O_{12}; d-Al_2O_3+Lu_3O_3$

Tal	ble	1
-----	-----	---

_

Tha	agardinatas	of throa	nhaca au	tootion fr	om tha	A1. O.	7.0. I	$n \cdot \Omega \cdot \alpha v \alpha t$	ama
I HC	coordinates	or unce-	Dilase eu	lectics II	on the A	A12U3 -	-2102-L	11203 888	cins.
						4-5	- 4	4 - 5 - 5 -	

Lanthanide, Y	Eutectic phase compositions	Composition, mol.%			$T_{\rm m.}, ^{\circ}{\rm C}$
		Al ₂ O ₃	ZrO ₂	Ln ₂ O ₃	
	$LZ_2 + LA + La_2O_3$	18	29	53	1750
La	$LZ_2 + T + LA$	26	36	38	1715
	β + T + LA	53	27	20	1665
27.1	$\beta + F + NA$	53	26	21	1675
Nd	$NA + F + Nd_2O_3$	19	21	60	1750
~	AL + F + SA	55	25	20	1680
Sm	SA + F + B	17	13	70	1760
	AL + F + GA	60	21	19	1662
Gd	$G_2A + F + B$	22	13	65	1830*
	$GA + F + G_2A$	29	11	60	1840^{*}
	$AL + F + Y_3A_5$	65	19	16	1715
37	$Y_3A_5 + F + YA$	47	12	41	1830
Y	$YA + F + Y_2A$	37	10	53	1850
	$Y_2A + F + C$	26	6	68	1910
	$AL + F + Er_3A_5$	65	19	16	1720
-	$Er_3A_5 + F + ErA$	47	12	41	1785
Er	$ErA + F + Er_2A$	37	10	53	1855
	$Er_2A + F + C$	21	12	67	1860
	$AL + F + Yb_3A_5$	65	20	15	1765
Yb	$Yb_3A_5 + F + Yb_2A$	41	9	50	1885

* Calculated with CALPHAD method.

Table 2
Experimental and predicted melting temperatures, chemical and phase compositions of alumina-rich three-phase eutectics in the Al ₂ O ₃ –ZrO ₂ –Ln(Y) ₂ O ₃ systems.

No.	Lanthanide, Y	Composition, mol.%			Phase composition	$T_{\rm m}, {}^{\circ}{\rm C}$
		Al ₂ O ₃	ZrO ₂	Ln ₂ O ₃		
1.	La	53	27	20	β-Al ₂ O ₃ , T, LaAlO ₃	1665
2.	Ce	53	27	20	β-Al ₂ O ₃ , T, CeAlO ₃	1775*
3.	Pr	53	26	21	β -Al ₂ O ₃ , F, PrAlO ₃	1685
4.	Nd	53	26	21	β-Al ₂ O ₃ , F, NdAlO ₃	1675
5.	Pm	-	-	-	β-Al ₂ O ₃ , F, PmAlO ₃	1785^{*}
6.	Sm	55	25	20	$Al_2O_3 + F + SmAlO_3$	1680
7.	Eu	57	23	20	$Al_2O_3 + F + EuAlO_3$	1580
8.	Gd	60	21	19	$Al_2O_3 + F + GdAlO_3$	1662
9.	Tb	61	21	18	$Al_2O_3 + F + Tb_3Al_5O_{12}$	1745
10.	Dy	62	20	18	$Al_2O_3 + F + Dy_3Al_5O_{12}$	1770
11.	Но	64	20	16	$Al_2O_3 + F + Ho_3Al_5O_{12}$	1780
12.	Y	65	19	16	$Al_2O_3 + F + Y_3Al_5O_{12}$	1715
13.	Er	65	19	16	$Al_2O_3 + F + Er_3Al_5O_{12}$	1720
14	Tm	65	19	16	$Al_2O_3 + F + Tm_3Al_5O_{12}$	1745
15.	Yb	65	20	15	$Al_2O_3 + F + Yb_3Al_5O_{12}$	1765
16.	Lu	65	20	15	$Al_2O_3 + F + Lu_3Al_5O_{12}$	1840

* Predicted.

Fig. 7. Experimental and calculated melting temperatures of the compounds in the systems Al_2O_3 - Ln_2O_3 ,⁴ lanthanides,³⁴ their oxides²¹ and alumina-rich three-phase eutectics in the Al_2O_3 - ZrO_2 - Ln_2O_3 systems: $1 - Ln_2O_3$; $2 - LnAlO_3$; $3 - LnAl_{11}O_{18}$; $4 - Ln_4Al_2O_9$; $5 - Ln_3Al_5O_{12}$; 6 - alumina-rich three-phase eutectics; 7 - lanthanides.

Fig. 8. Dependence of $ZrO_2-Ln_2O_3^{1,36}$ and $HfO_2-Ln_2O_3^{37-40}$ binary eutectics melting temperatures *vs* lanthanides atomic number: $1 - systems ZrO_2-Ln_2O_3$; $2 - systems HfO_2-Ln_2O_3$.

Fig. 9. Concentration areas in the Al_2O_3 -ZrO₂-Ln(Y)₂O₃ systems in which new materials for different industrial applications are perspective to construct.

directionally solidified eutectics (DSE), etc. are represented. Before constructing phase diagrams of the Al_2O_3 -ZrO_2-Ln(Y)₂O_3 systems the areas of applications were localized mainly near components. As a result of these investigations wide two- and three-phase areas were discovered, in which numbers of structural, heat-protecting and functional materials can be produced.

4. Conclusions

Phase equilibria in the ternary systems Al₂O₃–ZrO₂–Ln₂O₃ (Ln = La, Nd, Sm, Gd, Er, Yb and Y) were investigated by identical methods in all range of concentrations and 1250-2700 °C temperature range and their phase diagrams were constructed. They revealed that no quasiternary compounds and appreciable regions of solid solutions based on quasibinary compounds and components were found in the systems. Phase transformations $F \rightrightarrows T$ of ZrO₂-based solid solutions and $X \rightrightarrows H \rightrightarrows A \rightrightarrows B \rightrightarrows C$ of Ln₂O₃-based solid solutions realize as liquid involving transformation processes. Thermal stability of compoundssuperstructures with the pyrochlore-type structure $Ln_2Zr_2O_7$ and with rhombohedral structure Zr₃Ln₄O₁₂ formed in the binaries ZrO₂-Ln₂O₃ does not change with adding third component (Al₂O₃). Solidification in the systems finishes in eutectic equilibria in the areas close to the binary bounding systems Al₂O₃-Ln(Y)₂O₃. The established interaction regularities allowed to forecast interaction and phase diagrams construction in systems with other lanthanides (Ce, Pr, Pm, Eu, Tb, Dy, Ho, Tm, Lu). The limited experiments confirmed the forecast. Alumina-rich three-phase eutectics demonstrate cooperative eutectic growth, so they can be obtained as three-phase "in situ" composite by directional solidification.

References

- Rouanet A. Contribution a l'etude des systemes zircone-oxydes des lanthanides au voisinage de la fusion. *Rev Int Hautes Temper Refract* 1971;8:161–80.
- Bondar IA, Shirvinskaya AK, Popova VF, Mochalov IV, Ivanov AO. Thermal stability of orthoaluminates of rare-earth elements of yttrium subgroup. *DAN SSSR* 1979;246:1132–6 [in Russian].
- 3. Mizuno M. Phase diagrams of the systems Al₂O₃-Ho₂O₃ and Al₂O₃-Er₂O₃ at high temperatures. *J Ceram Soc Jpn* 1979;**87**:405–12.
- Wu P, Pelton AD. Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems. J Alloys Compd 1992;179:259–87.
- Lakiza SM, Lopato LM. Stable and metastable phase relations in the system alumina–zirconia–yttria. J Am Ceram Soc 1997;80:893–902.
- 6. Stubican VS, Hink RC, Ray SP. Phase equilibria and ordering in the system ZrO₂-Y₂O₃. *J Am Ceram Soc* 1978;**61**:17–21.
- Cocayne B. The uses and enigmas of the Al₂O₃-Y₂O₃ phase system. J Less-Com Met 1985;114:199–206.
- Mizuno M, Berjoan R, Coutures JP, Foex M. Phase diagram of the system Al₂O₃-La₂O₃ at elevated temperatures. J Ceram Soc Jpn 1974;82:631–6.
- 9. Couture JP. The Al₂O₃–Nd₂O₃ phase diagram. J Am Ceram Soc 1985;68:105–7.
- Mizuno M, Yamada T, Noguchi T. Phase diagram of the system Al₂O₃–Sm₂O₃ at high temperatures. *J Ceram Soc Jpn* 1977;85:374–9.
- Mizuno M, Yamada T, Noguchi T. Phase diagram of the systems Al₂O₃-Eu₂O₃ and Al₂O₃-Gd₂O₃ at high temperatures. *J Ceram Soc Jpn* 1977;85(11):543-8.

- Gervais M, Douy A. Solid phase transformation and melting of the compounds Ln₄Al₂O₉ (Ln=Gd, Dy, Y). *Mater Sci Eng* 1996;**B38**: 118–21.
- Mizuno M, Noguchi T. Phase diagram of the system Al₂O₃-Yb₂O₃ at high temperature. J Ceram Soc Jpn 1980;88:322-7.
- Stubican VS, Corman GS, Hellman JR, Senft G. Phase relationships in some ZrO₂ systems. In: *Adv. Ceram.: Proc. II Int. Conf. Sci. Technol. Zirconia, Vol. 12, Science and Technology of Zirconia II.* Stuttgart: The American Ceramic Society; 1983. p. 96–106.
- Lopato LM, Red'ko VP, Gerasimjuk GI, Shevchenko AV. Synthesis of some rare-earths zirconates (hafnates). *Poroshkovaya Met* 1990;(4):73–5 [in Russian].
- 16. Yokokawa H, Sakai N, Kawada T, Dokiya M. Phase diagram calculations for ZrO₂ based ceramics: thermodynamic regularities in zirconate formation and solubilities of transition metal oxides. In: *Sci. Technol. Zirconia V.* Lancaster, PA: Technomic Publishing Co.; 1993. p. 59–68.
- 17. Tuohig WD, Tien TY. Subsolidus phase equilibria in the system ZrO₂-Y₂O₃-Al₂O₃. *J Am Ceram Soc* 1980;**63**:595–6.
- Popov SG, Pashin SF, Paromova MV, Kulikova ZJa, Sch.Rozanova N, Klimenko AN, et al. Subsolidus phase equilibria in the ZrO₂–Y₂O₃–Al₂O₃ system. *Izv AN SSSR, Neorgan Mater* 1990;**26**:113–7 [in Russian].
- Lopato LM, Shevchenko AV, Kuschevsky AE. Investigation of the highrefractory oxide systems. *Poroshkovaya Metalurgiya* 1972;1:88–92 [in Russian].
- Shevchenko AV, Tkachenko VD, Lopato LM, Ruban AK, Pasdichny VV. Determination procedure of phase transition temperatures by using solar heating. *Poroshkovaya Metalurgiya* 1985;1:91–5 [in Russian].
- Red'ko VP. Physiko-chemical investigation of the compounds M₄Zr(Hf)₃O₁₂ in the systems ZrO₂(HfO₂)–rare-earths oxides. PhD in chemistry; 1990. p. 152–68 [in Russian].
- Lakiza S, Fabrichnaya O, Wang Ch, Zinkevich M, Aldinger F. Phase diagram of the ZrO₂–Gd₂O₃–Al₂O₃ system. *J Eur Ceram Soc* 2006;26(3):233–46.
- Lakiza S, Fabrichnaya O, Zinkevich M, Aldinger F. On the phase relations in the ZrO₂–YO_{1.5}–AlO_{1.5} system. J Alloys Compd 2006;420:237–45.
- 24. Lakiza SM, Lopato LM. Phase diagram of the Al₂O₃–ZrO₂–Nd₂O₃ system. *J Eur Ceram Soc* 2006;**26**(16):3725–32.
- Lakiza S, Lopato L. Phase diagram of the alumina–zirconia–samaria system. J Am Ceram Soc 2006;89(11):3516–21.
- Fabrichnaya O, Lakiza S, Wang Ch, Zinkewich M, Aldinger F. Assessment of thermodynamic functions in the ZrO₂–La₂O₃–Al₂O₃ system. *J Alloys Compd* 2008;453:271–81.
- 27. Lakiza SM, Lopato LM. Phase diagram of the Al₂O₃–ZrO₂–Er₂O₃ system. *J Eur Ceram Soc* 2008;**28**(12):2389–97.
- Lakiza SM, Zaitseva ZO, Lopato LM. The Al₂O₃–ZrO₂–Yb₂O₃ phase diagram. II. Liquidus surface. *Powder Met Met Ceram* 2008;47(5-6): 338–43.
- Lakiza SM, Red'ko VP, Lopato LM. The Al₂O₃–ZrO₂–Yb₂O₃ phase diagram. III. Solidus surface and phase equilibria in alloys solidification. *Powder Met Ceram* 2008;47(7-8):420–7.
- Waku Y, Sakata S, Mitani A, Shimizu K, Hasebe M. Temperature dependence of flexural strength and microstructure of Al₂O₃/Y₃Al₅O₁₂/ZrO₂ ternary melt growth composites. *J Mater Sci* 2002;**37**:2975–82.
- Murayama Y, Hamada S, Lee JH, Yoshikawa A, Shimizu K, Nakagawa N, et al. High-temperature strength of directionally solidified Al₂O₃/YAG/ZrO₂ eutectic composite. *Mater Sci Forum* 2005;475–479:1295–300.
- Waku Y, Sakata S, Mitani A, Shimizu K. High-temperature strength and a microstructure of an Al₂O₃/Er₃Al₅O₁₂/ZrO₂ ternary MGC. *J Jpn Inst Met* 2000;64:1263–8.
- Nakagawa N, Ohtsubo H, Waku Y, Yugami H. Thermal emission properties of Al₂O₃/Er₃Al₅O₁₂ eutectic ceramics. *J Eur Ceram Soc* 2005;25:1285–91.
- Nekrasov BV. Fundamentals of general chemistry, 3 vol. In: *Chemistry*, vol. 2. Moskov; 1967. 400 p. [in Russian].
- 35. Samsomov GV, Gilman IJa. Electron structure and physical properties of lanthanides oxides. *Kyiv, Inst Probl Mater Sci, AS USSR* 1975:26 [in Russian].

- Lopato LM, Andrievskaya ER, Shevchenko AV, Red'ko VP. Phase correlations in the system ZrO₂–Eu₂O₃. *J Inorg Chem* 1997;42(10):1736–9 [in Russian].
- Shevchenko AV, Lopato LM, Zajceva ZA. Interaction of HfO₂ with lanthanum, praseodymium and neodymium oxides at high temperatures. *Izv* AN SSSR, Neorgan Mater 1984;20:1530–4 [in Russian].
- 38. Shevchenko AV, Lopato LM, Nazarenko LV. The systems of HfO₂ with samarium, gadolinium, terbium and dysprosium oxides

at high temperatures. *Izv AN SSSR, Neorgan Mater* 1984;**20**: 1862–6.

- Shevchenko AV, Lopato LM, Kirjakova IE. Interaction of HfO₂ with Y₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃ and Lu₂O₃ at high temperatures. *Izv AN* SSSR, Neorgan Mater 1984;**20**:1991–4.
- Andrievskaya ER, Lopato LM, Shevchenko AV, Smirnov VP. Interaction in the system HfO₂-Eu₂O₃. *Izv RAN, Neonorgan Mater* 1997;**33**(7):836–8 [in Russian].